Calculations

# 1st Order Differential Equation Solution

Solution of first-order differential equations in the form of $\displaystyle {\frac{dy}{dx}}=f(x,y)$ or $\displaystyle {y'}=f(x,y)$ is made. Use the $x$ and $y$ variables. You can use the +, -, *, / math operators and the following functions. Use the pow function to take the exponent. For example, type pow (x, 2) for $x^2$.

 The differential equation you want to solve: $\displaystyle {\frac{dy}{dx}}=f(x,y)=$ Formula: Runge-Kutta-Fehlberg Method Runge-Kutta Method Adams-Moulton Method Necessary boundary conditions for solution: $x_0=$ $y_0=$ The desired $x$ value to be found: $x_1=$ Increment $\Delta x=$
 Equation Solution Nonlinear Equation System Roots Linear Equation System Solution Cubic Equation Solution Quartic Equation Solution Quintic Equation Solution Sextic Equation Solution Differential Equations Differential Equation Solution Higher Order Differential Equation
 Functions to be used in equations:$\begin{array}{lll|lll} t^a & : & \mathrm{pow(t,a)} \\\sin\, t & : & \mathrm{sin(t)} &\cos\,t & : & \mathrm{cos(t)} \\\tan\,t & : &\mathrm{tan(t)} &\ln\,t & : & \mathrm{log(t)} \\e^t & : & \mathrm{exp(t)} &\left|t\right| & : & \mathrm{abs(t)} \\\arcsin\,t & : & \mathrm{asin(t)} &\arccos\,t & : & \mathrm{acos(t)} \\\arctan\,t & : & \mathrm{atan(t)} &\sqrt{t} & : & \mathrm{sqrt(t)} \\ \\\pi & : & \mathrm{pi} &e \mathrm{ sayısı} & : & \mathrm{esay} \\\ln\,2 & : &\mathrm{LN2} & \ln\,10 & : & \mathrm{LN10} \\\log_{2}\,e & : & \mathrm{Log2e} & \log_{10}\,e & : & \mathrm{Log10e} \end{array}$

 Documents    Products    Calculator    Unit Conversion    Reference    Contact Pipe Calculations    Air Ducts    Equation Solver    Kenan KILIÇASLAN 2012© Copyright.       Designed by Nuit