Ana Sayfa | SSS | Site Haritası | Yardım
Kenan kılıçaslan

  • Sürtünme Kaybı
  • Diferansiyel Denklem
  • Denklem Çözümü

Genel İntegraller

1.
$\displaystyle\int{adx}=ax$


2.
$\displaystyle\int{a\displaystyle f(x)dx}=a\displaystyle\int{f(x)dx}$


3.
$\displaystyle\int{(u\mp v\mp w)dx}=\displaystyle\int{udx}\mp\displaystyle\int{vdx}\mp\displaystyle\int{wdx}$


4.
$\displaystyle\int{udv}=uv-\displaystyle\int{vdu}$


5.
$\displaystyle\int{f(ax)dx}=\frac{1}{a}\displaystyle\int{f(u)du}$


6.
$\displaystyle\int\{F{f(x)\}dx}=\displaystyle\int{F(u)\displaystyle\frac{dx}{du}du}=\displaystyle\int{\displaystyle\frac{F(u)}{f'(x)}du}$


7.
$\displaystyle\int{u^ndu}=\frac{u^{n+1}}{n+1}\quad;\quad n\neq-1$


8.
$\displaystyle\int{\displaystyle\frac{du}{u}}=\displaystyle\ln|u|$


9.
$\displaystyle\int{e^{u}du}=e^{u}$


10.
$\displaystyle\int{a^{u}du}=\displaystyle\int{e^{u\ln a}du}=\displaystyle\frac{e^{u\ln a}}{\displaystyle\ln a}=\displaystyle\frac{a^u}{\ln a}\quad;\quad a>0 \quad;\quad a \neq 1$


11.
$\displaystyle\int{\displaystyle\sin udu}=-\displaystyle\cos u$


12.
$\displaystyle\int{\displaystyle\cos udu}=\displaystyle\sin u$


13.
$\displaystyle\int{\displaystyle\tan udu}=\displaystyle\ln\displaystyle\sec u=-\displaystyle\ln\displaystyle\cos u$


14.
$\displaystyle\int{\displaystyle\cot udu}=\displaystyle\ln\displaystyle\sin u$


15.
$\displaystyle\int{\displaystyle\sec udu}=\displaystyle\ln(\displaystyle\sec u+\tan u)=\displaystyle\ln\displaystyle\tan\left(\frac{u}{2}+\frac{\pi}{4}\right)$


16.
$\displaystyle\int{\displaystyle\csc udu}=\displaystyle\ln(\displaystyle\csc u-\displaystyle\cot u)=\displaystyle\ln\displaystyle\tan\displaystyle\frac{u}{2}$


17.
$\displaystyle\int{\displaystyle\sec^2 udu}=\displaystyle\tan u$


18.
$\displaystyle\int{\displaystyle\csc^2 udu}=-\displaystyle\cot u$


19.
$\displaystyle\int{\displaystyle\tan^2 udu}=\displaystyle\tan{u}-u$


20.
$\displaystyle\int{\displaystyle\cot^2 udu}=-\displaystyle\cot{u}-u \quad;\quad$


21.
$\displaystyle\int{\displaystyle\sin^2 udu}=\displaystyle\frac{u}{2}-\displaystyle\frac{\displaystyle\sin 2u}{4}=\displaystyle\frac{1}{2}(u-\displaystyle\sin u\displaystyle\cos u)$


22.
$\displaystyle\int{\displaystyle\cos^2 udu}=\displaystyle\frac{u}{2}+\displaystyle\frac{\displaystyle\sin 2u}{4}=\displaystyle\frac{1}{2}(u+\displaystyle\sin u\displaystyle\cos u)$


23.
$\displaystyle\int{\displaystyle\sec u\displaystyle\tan udu}=\displaystyle\sec u$


24.
$\displaystyle\int{\displaystyle\csc u\displaystyle\cot udu}=-\displaystyle\csc u$


25.
$\displaystyle\int{\displaystyle\sinh udu}=\displaystyle\cosh u$


26.
$\displaystyle\int{\displaystyle\cosh udu}=\displaystyle\sinh u$


27.
$\displaystyle\int{\displaystyle\tanh udu}=\displaystyle\ln\displaystyle\cosh u$


28.
$\displaystyle\int{\displaystyle\coth udu}=\displaystyle\ln\displaystyle\sinh u$


29.
$\displaystyle\int{\displaystyle\text{sech} udu}=\displaystyle\sin^{-1}(\displaystyle\tanh u) \;\;\text{ veya}\;\; 2\displaystyle\tan^{-1}e^u$


30.
$\displaystyle\int{\displaystyle\text{csch} udu}=\displaystyle\ln \displaystyle\tanh\displaystyle\frac{u}{2} \;\; \text{veya}\;\; -\displaystyle\coth^{-1}e^u$


31.
$\displaystyle\int{\displaystyle\text{sech}^2 udu}=\displaystyle\tanh u$


32.
$\displaystyle\int{\displaystyle\text{csch}^2 udu}=-\displaystyle\coth u$


33.
$\displaystyle\int{\displaystyle\tanh^2 udu}=u-\displaystyle\tanh u$


34.
$\displaystyle\int{\displaystyle\coth^2 udu}=u-\displaystyle\coth u$


35.
$\displaystyle\int{\displaystyle\sinh^2 udu}=\displaystyle\frac{\displaystyle\sinh 2u}{4}-\displaystyle\frac{u}{2}=\displaystyle\frac{1}{2}(\displaystyle\sinh u\displaystyle\cosh u-u)$


36.
$\displaystyle\int{\displaystyle\cosh^2 udu}=\displaystyle\frac{\displaystyle\sinh 2u}{4}+\displaystyle\frac{u}{2}=\displaystyle\frac{1}{2}(\displaystyle\sinh u\displaystyle\cosh u+u)$


37.
$\displaystyle\int{\displaystyle\text{sech} u\displaystyle\tanh udu}=-sech u$


38.
$\displaystyle\int{\displaystyle\text{csch} u\displaystyle\coth udu}=-csch u$


39.
$\displaystyle\int{\displaystyle\frac{du}{u^{2}+a^{2}}}=\displaystyle\frac{1}{a}\displaystyle\tan^{-1}\displaystyle\frac{u}{a}$


40.
$\displaystyle\int{\displaystyle\frac{du}{u^{2}-a^{2}}}=\displaystyle\frac{1}{2a}\ln\left(\displaystyle\frac{u-a}{u+a}\right)=-\displaystyle\frac{1}{a}\displaystyle\coth^{-1}\displaystyle\frac{u}{a}\quad;\quad u^{2}>a^{2}$


41.
$\int{\frac{du}{a^{2}-u^{2}}}=\frac{1}{2a}\ln\left(\frac{a+u}{a-u}\right)=\frac{1}{a}\tanh^{-1}\frac{u}{a}\quad;\quad u^{2}< a^{2}$


42.
$\displaystyle\int{\displaystyle\frac{du}{\displaystyle\sqrt{a^{2}-u^{2}}}}=\sin^{-1}\displaystyle\frac{u}{a}$


43.
$\displaystyle\int \displaystyle\frac{du}{\displaystyle\sqrt{u^{2}+a^{2}}} = \displaystyle\ln \left( u+ \displaystyle\sqrt{u^{2} + a^{2}} \right)$


44.
$\displaystyle\int \frac{du}{\displaystyle\sqrt{u^{2}-a^{2}}} = \displaystyle\ln \left( u + \displaystyle\sqrt{u^{2} - a^{2}} \right)$


45.
$\displaystyle\int{\frac{du}{u\displaystyle\sqrt{u^{2}-a^{2}}}}=\displaystyle\frac{1}{a}sec^{-1}\left|\displaystyle\frac{u}{a}\right|$


46.
$\displaystyle\int{\displaystyle\frac{du}{u\displaystyle\sqrt{u^{2}+a^{2}}}}=-\displaystyle\frac{1}{a}\displaystyle\ln\left(\displaystyle\frac{a+\displaystyle\sqrt{u^{2}+a^{2}}}{u}\right)$


47.
$\displaystyle\int{\displaystyle\frac{du}{u\displaystyle\sqrt{a^{2}-u^{2}}}}=-\displaystyle\frac{1}{a}\displaystyle\ln\left(\frac{a+\displaystyle\sqrt{u^{2}-a^{2}}}{u}\right)$


48.
$\displaystyle\int{f^{(n)}gdx}=f^{(n-1)}g-f^{(n-2)}g'+f^{(n-3)}g''-\cdots(-1)^{n}\displaystyle\int{fg^{(n)}dx}$


beyaz_sayfa_en_alt_oval

Dökümanlar    Ürün ve Hizmetler    Hesap Modülleri    Birim Çevir    Referanslar    İletişim

Kenan KILIÇASLAN 2012© Tüm Hakları Saklıdır.       Designed by Nuit