Ana Sayfa | SSS | Site Haritası | Yardım
Kenan kılıçaslan

  • Sürtünme Kaybı
  • Diferansiyel Denklem
  • Denklem Çözümü

$a^2-x^2$ içeren integraller

$a^2>x^2\quad \text{kabul edecektir.}$


1.
$\displaystyle \int\displaystyle \frac{dx}{a^{\displaystyle2}-x^{\displaystyle2}}=\displaystyle \frac{1}{2a}\ln\left(\displaystyle \frac{a+x}{a-x}\right)\;\;\text{veya}\;\;\;\;\displaystyle \frac{1}{a}\tanh^{\displaystyle-1}\displaystyle \frac{x}{a}$


2.
$\displaystyle \int\displaystyle \frac{x\,dx}{a^{\displaystyle2}-x^{\displaystyle2}}=-\displaystyle \frac{1}{2}\ln(a^{\displaystyle2}-x^{\displaystyle2})$


3.
$\displaystyle \int\displaystyle \frac{x^{\displaystyle2}\,dx}{a^{\displaystyle2}-x^{\displaystyle2}}=-x+\displaystyle \frac{a}{2}\ln\left(\displaystyle \frac{a+x}{a-x}\right)$


4.
$\displaystyle \int\displaystyle \frac{x^{\displaystyle3}\,dx}{a^{\displaystyle2}-x^{\displaystyle2}}=-\displaystyle \frac{x^{\displaystyle2}}{2}-\displaystyle \frac{a^{\displaystyle2}}{2}\ln(a^{\displaystyle2}-x^{\displaystyle2})$


5.
$\displaystyle \int\displaystyle \frac{dx}{x(a^{\displaystyle2}-x^{\displaystyle2})}=\displaystyle \frac{1}{2a^{\displaystyle2}}\ln\left(\displaystyle \frac{x^{\displaystyle2}}{a^{\displaystyle2}-x^{\displaystyle2}}\right)$


6.
$\displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle2}(a^{\displaystyle2}-x^{\displaystyle2})}=-\displaystyle \frac{1}{a^{\displaystyle2}x}+\displaystyle \frac{1}{2a^{\displaystyle3}}\ln\left(\displaystyle \frac{a+x}{a-x}\right)$


7.
$\displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle3}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}=-\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{2a^{\displaystyle2}x^{\displaystyle2}}\;-\;\displaystyle \frac{1}{2a^{\displaystyle3}}\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)$


8.
$\displaystyle \int\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}\,dx=\displaystyle \frac{x\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{2}\;+\;\displaystyle \frac{a^{\displaystyle2}}{2}\sin^{\displaystyle-1}\displaystyle \frac{x}{a}$


9.
$\displaystyle \int\displaystyle \frac{x\,dx}{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle2}}=\displaystyle \frac{1}{2(a^{\displaystyle2}-x^{\displaystyle2})}$


10.
$\displaystyle \int x^{\displaystyle2}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}\,dx=-\displaystyle \frac{x(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{4}\;+\;\displaystyle \frac{a^{\displaystyle2}x\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{8}\;+\;\displaystyle \frac{a^{\displaystyle4}}{8}\sin^{\displaystyle-1}\displaystyle \frac{x}{a}$


11.
$\displaystyle \int x^{\displaystyle3}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}\,dx=\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle5/2}}{5}\;-\;\displaystyle \frac{a^{\displaystyle2}(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{3}$


12.
$\displaystyle \int\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\,dx=\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}-a\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)$


13.
$\displaystyle \int\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x^{\displaystyle2}}\,dx=-\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}-\sin^{\displaystyle-1}\displaystyle \frac{x}{a}$


14.
$\displaystyle \int\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x^{\displaystyle3}}\,dx=-\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{2x^{\displaystyle2}}\;+\;\displaystyle \frac{1}{2a}\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)$


15.
$\displaystyle \int\displaystyle \frac{dx}{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \frac{x}{a^{\displaystyle2}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}$


16.
$\displaystyle \int\displaystyle \frac{x\,dx}{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle n}}=\displaystyle \frac{1}{2(n-1)(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle n-1}}$


17.
$\displaystyle \int\displaystyle \frac{x^{\displaystyle2}\,dx}{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \frac{x}{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}-\sin^{\displaystyle-1}\displaystyle \frac{x}{a}$


18.
$\displaystyle \int\displaystyle \frac{x^{\displaystyle3}\,dx}{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}+\displaystyle \frac{a^{\displaystyle2}}{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}$


19.
$\displaystyle \int\displaystyle \frac{dx}{x(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \frac{1}{a^{\displaystyle2}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}-\displaystyle \frac{1}{a^{\displaystyle3}}\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)$


beyaz_sayfa_en_alt_oval

Dökümanlar    Ürün ve Hizmetler    Hesap Modülleri    Birim Çevir    Referanslar    İletişim

Kenan KILIÇASLAN 2012© Tüm Hakları Saklıdır.       Designed by Nuit