Ana Sayfa | SSS | Site Haritası | Yardım
Kenan kılıçaslan

  • Sürtünme Kaybı
  • Diferansiyel Denklem
  • Denklem Çözümü

$\sqrt{x^2-a^2}$ içeren integraller

1.
$\displaystyle\int\displaystyle \frac{dx}{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}=\ln\left(x+\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\right)$


2.
$\displaystyle \int\displaystyle \frac{x\,dx}{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}=\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}$


3.
$\displaystyle \int\displaystyle \frac{x^{\displaystyle2}\,dx}{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}=\displaystyle \frac{x\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{2}\;+\;\displaystyle \frac{a^{\displaystyle2}}{2}\ln\left(x+\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\right)$


4.
$\displaystyle \int\displaystyle \frac{x^{\displaystyle3}\,dx}{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}=\displaystyle \frac{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{3}+a^{\displaystyle2}\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}$


5.
$\displaystyle \int\displaystyle \frac{dx}{x\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}=\displaystyle \frac{1}{a}\sec^{\displaystyle-1}\left|\displaystyle \frac{x}{a}\right|$


6.
$\displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle2}\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}=\displaystyle \frac{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{a^{\displaystyle2}x}$


7.
$\displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle3}\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}=\displaystyle \frac{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{2a^{\displaystyle2}x^{\displaystyle2}}+\displaystyle \frac{1}{2a^{\displaystyle3}}\sec^{\displaystyle-1}\left|\displaystyle \frac{x}{a}\right|$


8.
$\displaystyle \int\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\,dx=\displaystyle \frac{x\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{2}\;-\;\displaystyle \frac{a^{\displaystyle2}}{2}\ln\left(x+\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\right)$


9.
$\displaystyle \int x\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\,dx=\displaystyle \frac{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{3}$


10.
$\begin{array}{lcl} \displaystyle \int x^{\displaystyle2}\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\,dx&=&\displaystyle \frac{x(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{4}\;+\;\displaystyle \frac{a^{\displaystyle2}x\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{8}\;\\\\&&-\;\displaystyle \frac{a^{\displaystyle4}}{8}\ln\left(x+\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\right) \end{array}$


11.
$\displaystyle \int x^{\displaystyle3}\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\,dx=\displaystyle \frac{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle5/2}}{5}\;+\;\displaystyle \frac{a^{\displaystyle2}(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{3}$


12.
$\displaystyle \int\displaystyle \frac{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{x}\,dx=\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}-a\sec^{\displaystyle-1}\left|\displaystyle \frac{x}{a}\right|$


13.
$\displaystyle \int\displaystyle \frac{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{x^{\displaystyle2}}\,dx=-\displaystyle \frac{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{x}\;+\;\ln\left(x+\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\right)$


14.
$\displaystyle \int\displaystyle \frac{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{x^{\displaystyle3}}\,dx=-\displaystyle \frac{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{2x^{\displaystyle2}}+\displaystyle \frac{1}{2a}\sec^{\displaystyle-1}\left|\displaystyle \frac{x}{a}\right|$


15.
$\displaystyle \int\displaystyle \frac{dx}{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}=-\displaystyle \frac{x}{a^{\displaystyle2}\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}$


16.
$\displaystyle \int\displaystyle \frac{x\,dx}{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \frac{-1}{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}$


17.
$\displaystyle \int\displaystyle \frac{x^{\displaystyle2}\,dx}{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}=-\displaystyle \frac{x}{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}+\ln\left(x+\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\right)$


18.
$\displaystyle \int\displaystyle \frac{x^{\displaystyle3}\,dx}{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\;-\;\displaystyle \frac{a^{\displaystyle2}}{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}$


19.
$\displaystyle \int\displaystyle \frac{dx}{x(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \frac{-1}{a^{\displaystyle2}\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}-\displaystyle \frac{1}{a^{\displaystyle3}}\sec^{\displaystyle-1}\left|\displaystyle \frac{x}{a}\right|$


20.
$\displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle2}(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}=-\displaystyle \frac{\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{a^{\displaystyle4}x}\;-\;\displaystyle \frac{x}{a^{\displaystyle4}\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}$


21.
$\begin{array}{lcl} \displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle3}(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}&=&\displaystyle \frac{1}{2a^{\displaystyle2}x^{\displaystyle2}\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}-\displaystyle \frac{3}{2a^{\displaystyle4}\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}\\\\&&-\displaystyle \frac{3}{2a^{\displaystyle5}}\sec^{\displaystyle-1}\left|\displaystyle \frac{x}{a}\right| \end{array}$


22.
$\begin{array}{lcl} \displaystyle \int(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}\,dx&=&\displaystyle \frac{x(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{4}\;-\;\displaystyle \frac{3a^{\displaystyle2}x\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{8}\;\\\\&&+\;\displaystyle \frac{3}{8}a^{\displaystyle4}\ln\left(x+\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\right) \end{array}$


23.
$\displaystyle \int x(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}\,dx=\displaystyle \frac{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle5/2}}{5}$


24.
$\begin{array}{ll} \displaystyle \int x^{\displaystyle2}(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}\,dx=\displaystyle \frac{x(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle5/2}}{6}\;+\;\displaystyle \frac{a^{\displaystyle2}x(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{24}\;\\\mbox{} -\;\displaystyle \frac{a^{\displaystyle4}x\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{16}\;+\;\displaystyle \frac{a^{\displaystyle6}}{16}\ln\left(x+\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\right) \end{array}$


25.
$\displaystyle \int x^{\displaystyle3}(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}\,dx=\displaystyle \frac{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle7/2}}{7}\;+\;\displaystyle \frac{a^{\displaystyle2}(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle5/2}}{5}$


26.
$\begin{array}{lcl} \displaystyle \int\displaystyle \frac{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{x}\,dx&=&\displaystyle \frac{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{3}\;-\;a^{\displaystyle2}\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\;\\\\&&+\;a^{\displaystyle3}\sec^{\displaystyle-1}\left|\displaystyle \frac{x}{a}\right| \end{array}$


27.
$\begin{array}{lcl} \displaystyle \int\displaystyle \frac{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{x^{\displaystyle2}}\,dx&=&-\displaystyle \frac{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{x}\;+\;\displaystyle \frac{3x\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{2}\;\\\\&&-\;\displaystyle \frac{3}{2}a^{\displaystyle2}\ln\left(x+\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}\right) \end{array}$


28.
$\begin{array}{lcl} \displaystyle \int\displaystyle \frac{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{x^{\displaystyle3}}\,dx&=&-\displaystyle \frac{(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{2x^{\displaystyle2}}\;+\;\displaystyle \frac{3\displaystyle \sqrt{x^{\displaystyle2}-a^{\displaystyle2}}}{2}\;\\\\&&-\;\displaystyle \frac{3}{2}a\sec^{\displaystyle-1}\left|\displaystyle \frac{x}{a}\right| \end{array}$


beyaz_sayfa_en_alt_oval

Dökümanlar    Ürün ve Hizmetler    Hesap Modülleri    Birim Çevir    Referanslar    İletişim

Kenan KILIÇASLAN 2012© Tüm Hakları Saklıdır.       Designed by Nuit