Ana Sayfa | SSS | Site Haritası | Yardım
Kenan kılıçaslan

  • Sürtünme Kaybı
  • Diferansiyel Denklem
  • Denklem Çözümü

$\ln \left ( {ax} \right )$ içeren integraller

1.
$\displaystyle\int \ln xdx=x\ln x-x$


2.
$\displaystyle\int x\ln x dx=\displaystyle \frac{x^2}{2}(\ln x-\displaystyle \frac{1}{2})$


3.
$\displaystyle\int x^m\ln xdx=\displaystyle \frac{x^{m+1}}{m+1}\left(\ln x-\displaystyle \frac{1}{m+1}\right)$


4.
$\displaystyle\int\displaystyle \frac{\ln x}{x}dx=\displaystyle \frac{1}{2}\ln^2 x$


5.
$\displaystyle\int\displaystyle \frac{\ln x}{x^2}dx=-\displaystyle \frac{\ln x}{x}-\displaystyle \frac{1}{x}$


6.
$\displaystyle\int\ln^2 xdx=x\ln^2 x-2x\ln x+2x$


7.
$\displaystyle\int\displaystyle \frac{\ln^n xdx}{x}=\displaystyle \frac{\ln^{n+1}x}{n+1}$


8.
$\displaystyle\int\displaystyle \frac{dx}{x\ln x}=\ln (\ln x)$


9.
$\displaystyle\int\displaystyle \frac{dx}{\ln x}=\ln (\ln x)+\ln x+\displaystyle \frac{\ln^2 x}{2\cdot 2!}+\displaystyle \frac{\ln^3 x}{3\cdot 3!}+\cdot\cdot\cdot$


10.
$\displaystyle\int\displaystyle \frac{x^m dx}{\ln x}=\ln (\ln x)+(m+1)\ln x + \displaystyle \frac{(m+1)^2\ln^2 x}{2\cdot 2!}+\displaystyle \frac{(m+1)^3\ln^3x}{3\cdot 3!}+\cdot\cdot\cdot$


11.
$\displaystyle\int\ln^n xdx=x\ln^n x-n\int\ln^{n-1}xdx$


12.
$\displaystyle\int x^m\ln^n xdx=\displaystyle \frac{x^{m+1}\ln^n x}{m+1}-\displaystyle \frac{n}{m+1}\int x^m\ln^{n-1}xdx$


13.
$\displaystyle\int\ln(x^2+a^2)dx=x\ln(x^2+a^2)-2x+2a\tan^{-1}\displaystyle \frac{x}{a}$


14.
$\displaystyle\int\ln(x^2-a^2)dx=x\ln(x^2-a^2)-2x+a\ln\left(\displaystyle \frac{x+a}{x-a}\right)$


15.
$\displaystyle\int x^m\ln(x^2\pm a^2)dx=\displaystyle \frac{x^{m+1}\ln(x^2\pm a^2)}{m+1}-\displaystyle \frac{2}{m+1}\int\displaystyle \frac{x^{m+2}}{x^2\pm a^2}dx$


beyaz_sayfa_en_alt_oval

Dökümanlar    Ürün ve Hizmetler    Hesap Modülleri    Birim Çevir    Referanslar    İletişim

Kenan KILIÇASLAN 2012© Tüm Hakları Saklıdır.       Designed by Nuit