Ana Sayfa | SSS | Site Haritası | Yardım
Kenan kılıçaslan

  • Sürtünme Kaybı
  • Diferansiyel Denklem
  • Denklem Çözümü

Bazı Temel Türevler

$u,v,w\text{ fonksiyonlar }, x \text{degisken}, a,b,c,n \text{ sabitler olmak üzere}$


1.
$\displaystyle \frac{\displaystyle d}{\displaystyle dx}\displaystyle \left ( \displaystyle c \displaystyle \right )=\displaystyle 0$


2.
$\displaystyle \frac{\displaystyle d}{\displaystyle dx}\displaystyle \left ( \displaystyle x \displaystyle \right )=\displaystyle 1$


3.
$\displaystyle \frac{\displaystyle d}{\displaystyle dx}\displaystyle \left ( \displaystyle x^n \displaystyle \right )=\displaystyle nx^{\displaystyle {n-1}}$


4.
$\displaystyle \frac{\displaystyle d}{\displaystyle dx}\displaystyle \left ( \displaystyle u\pm v \displaystyle \right )=\displaystyle \frac{du}{dx}\pm \displaystyle \frac{dv}{dx}$


5.
$\displaystyle \frac{\displaystyle d}{\displaystyle dx}\displaystyle \left ( \displaystyle cu \displaystyle \right )=\displaystyle c\displaystyle \frac{du}{dx}$


6.
$\displaystyle \frac{\displaystyle d}{\displaystyle dx}\displaystyle \left ( \displaystyle u.v \displaystyle \right )=\displaystyle u\displaystyle \frac{dv}{dx}+\displaystyle v\displaystyle \frac{du}{dx}$


7.
$\displaystyle \frac{d}{dx} \left ( \displaystyle \frac{u}{v} \right )=\displaystyle \frac{v\displaystyle \frac{du}{dx}-u\displaystyle \frac{dv}{dx}}{v^2}$


8.
$\displaystyle \frac{d}{dx} \left ( \displaystyle u^n \right )=\displaystyle nu^{n-1} \displaystyle\frac{du}{dx}$


9.
$\displaystyle \frac{d}{dx} \left ( \displaystyle u \circ v \right )=\displaystyle\frac{dv}{dx}\left (\displaystyle\frac{du}{dx} \circ v \right )$


10.
$\displaystyle \frac{du}{dx} =\displaystyle\frac{du}{dv}\displaystyle\frac{dv}{dx}$


beyaz_sayfa_en_alt_oval

Dökümanlar    Ürün ve Hizmetler    Hesap Modülleri    Birim Çevir    Referanslar    İletişim

Kenan KILIÇASLAN 2012© Tüm Hakları Saklıdır.       Designed by Nuit