Ana Sayfa | SSS | Site Haritası | Yardım
Kenan kılıçaslan

  • Sürtünme Kaybı
  • Diferansiyel Denklem
  • Denklem Çözümü

Trigonometrik Fonksiyonların Türevleri

1.
$\displaystyle \frac{d}{dx}\left ( \sin u \right ) =\displaystyle \cos u \displaystyle\frac{du}{dx}$


2.
$\displaystyle \frac{d}{dx}\left ( \cos u \right ) =\displaystyle -\sin u \displaystyle\frac{du}{dx}$


3.
$\displaystyle \frac{d}{dx}\left ( \tan u \right ) =\displaystyle \sec^2 u \displaystyle\frac{du}{dx}$


4.
$\displaystyle \frac{d}{dx}\left ( \cot u \right ) =\displaystyle -\csc^2 u \displaystyle\frac{du}{dx}$


5.
$\displaystyle \frac{d}{dx}\left ( \sec u \right ) =\displaystyle \sec u \displaystyle \tan u \displaystyle\frac{du}{dx}$


6.
$\displaystyle \frac{d}{dx}\left ( \csc u \right ) =\displaystyle -\csc u \displaystyle \cot u \displaystyle\frac{du}{dx}$


7.
$\displaystyle \frac{d}{dx}\left ( \sin^{-1} u \right ) =\displaystyle \frac{1}{\displaystyle\sqrt{1-u^2}} \displaystyle\frac{du}{dx}$


8.
$\displaystyle \frac{d}{dx}\left ( \cos^{-1} u \right ) =\displaystyle -\frac{1}{\displaystyle\sqrt{1-u^2}} \displaystyle\frac{du}{dx}$


9.
$\displaystyle \frac{d}{dx}\left ( \tan^{-1} u \right ) =\displaystyle \frac{1}{\displaystyle{1+u^2}} \displaystyle\frac{du}{dx}$


10.
$\displaystyle \frac{d}{dx}\left ( \cot^{-1} u \right ) =\displaystyle -\frac{1}{\displaystyle{1+u^2}} \displaystyle\frac{du}{dx}$


11.
$\displaystyle \frac{d}{dx}\left ( \sec^{-1} u \right ) =\displaystyle \frac{1}{\displaystyle\left | u \right | \sqrt{1+u^2}} \displaystyle\frac{du}{dx}$


12.
$\displaystyle \frac{d}{dx}\left ( \csc^{-1} u \right ) =\displaystyle -\frac{1}{\displaystyle\left | u \right | \sqrt{1+u^2}} \displaystyle\frac{du}{dx}$


beyaz_sayfa_en_alt_oval

Dökümanlar    Ürün ve Hizmetler    Hesap Modülleri    Birim Çevir    Referanslar    İletişim

Kenan KILIÇASLAN 2012© Tüm Hakları Saklıdır.       Designed by Nuit