Matematica
|
Con √ax2+bx+c
- 1.
- ∫dx√ax2+bx+c={1√aln(2√a√ax2+bx+c+2ax+b)−1√−asin−1(2ax+b√b2−4ac)or1√asinh−1(2ax+b√4ac−b2)
- 2.
- ∫xdx√ax2+bx+c=√ax2+bx+ca−b2a∫dx√ax2+bx+c
- 3.
- ∫x2dx√ax2+bx+c=2ax−3b4a2√ax2+bx+c+3b2−4ac8a2∫dx√ax2+bx+c
- 4.
- ∫dxx√ax2+bx+c={−1√cln(2√c√ax2+bx+c+bx+2cx)1√−csin−1(bx+2c|x|√b2−4ac)or−1√csinh−1(bx+2c|x|√4ac−b2)
- 5.
- ∫dxx2√ax2+bx+c=−√ax2+bx+ccx−b2c∫dxx√ax2+bx+c
- 6.
- ∫√ax2+bx+cdx=(2ax+b)√ax2+bx+c4a+4ac−b28a∫dx√ax2+bx+c
- 7.
- ∫x√ax2+bx+cdx=(ax2+bx+c)3/23a−b(2ax+b)8a2√ax2+bx+c−b(4ac−b2)16a2∫dx√ax2+bx+c
- 8.
- ∫x2√ax2+bx+cdx=6ax−5b24a2(ax2+bx+c)3/2+5b2−4ac16a2∫√ax2+bx+cdx
- 9.
- ∫√ax2+bx+cxdx=√ax2+bx+c+b2∫dx√ax2+bx+c+c∫dxx√ax2+bx+c
- 10.
- ∫√ax2+bx+cx2dx=−√ax2+bx+cx+a∫dxax2+bx+c+b2∫dx√ax2+bx+c
- 11.
- ∫dx(ax2+bx+c)3/2=2(2ax+b)(4ac−b2)√ax2+bx+c
- 12.
- ∫xdx(ax2+bx+c)3/2=2(bx+2c)(b2−4ac)√ax2+bx+c
- 13.
- ∫x2dx(ax2+bx+c)3/2=(2b2−4ac)x+2bca(4ac−b2)√ax2+bx+c+1a∫dx√ax2+bx+c
- 14.
- ∫dxx(ax2+bx+c)3/2=1c√ax2+bx+c+1c∫dxx√ax2+bx+c−b2c∫dx(ax2+bx+c)3/2
- 15.
- ∫dxx2(ax2+bx+c)3/2=−ax2+2bx+cc2x√ax2+bx+c+b2−2ac2c2∫dx(ax2+bx+c)3/2
- 16.
- ∫(ax2+bx+c)n+1/2dx=(2ax+b)(ax2+bx+c)n+1/24a(n+1)
- 17.
- ∫x(ax2+bx+c)n+1/2dx=(ax2+bx+c)n+3/2a(2n+3)−b2a∫(ax2+bx+c)n+1/2dx
- 18.
- ∫dx(ax2+bx+c)n+1/2=2(2ax+b)(2n−1)(4ac−b2)(ax2+bx+c)n−1/2
- 19.
- ∫dxx(ax2+bx+c)n+1/2=1(2n−1)c(ax2+bx+c)n−1/2
|