Matematica
|
Integrali con ln(ax)
- 3.
- ∫xmlnxdx=xm+1m+1(lnx−1m+1)
- 6.
- ∫ln2xdx=xln2x−2xlnx+2x
- 9.
- ∫dxlnx=ln(lnx)+lnx+ln2x2⋅2!+ln3x3⋅3!+⋅⋅⋅
- 10.
- ∫xmdxlnx=ln(lnx)+(m+1)lnx+(m+1)2ln2x2⋅2!+(m+1)3ln3x3⋅3!+⋅⋅⋅
- 11.
- ∫lnnxdx=xlnnx−n∫lnn−1xdx
- 12.
- ∫xmlnnxdx=xm+1lnnxm+1−nm+1∫xmlnn−1xdx
- 13.
- ∫ln(x2+a2)dx=xln(x2+a2)−2x+2atan−1xa
- 14.
- ∫ln(x2−a2)dx=xln(x2−a2)−2x+aln(x+ax−a)
- 15.
- ∫xmln(x2±a2)dx=xm+1ln(x2±a2)m+1−2m+1∫xm+2x2±a2dx
|