Matematica
|
Con √a2−x2
- 3.
- ∫x2dx√a2−x2=−x√a2−x22+a22sin−1xa
- 4.
- ∫x3dx√a2−x2=(a2−x2)3/23−a2√a2−x2
- 5.
- ∫dxx√a2−x2=−1aln(a+√a2−x2x)
- 6.
- ∫dxx2√a2−x2=−√a2−x2a2x
- 7.
- ∫dxx3√a2−x2=−√a2−x22a2x2−12a3ln(a+√a2−x2x)
- 8.
- ∫√a2−x2dx=x√a2−x22+a22sin−1xa
- 9.
- ∫x√a2−x2dx=−(a2−x2)3/23
- 10.
- ∫x2√a2−x2dx=−x(x2−a2)3/24+a2x√a2−x28+a48sin−1xa
- 11.
- ∫x3√a2−x2dx=(a2−x2)5/25−a2(a2−x2)3/23
- 12.
- ∫√a2−x2xdx=√a2−x2−aln(a+√a2−x2x)
- 13.
- ∫√a2−x2x2dx=−√a2−x2x−sin−1xa
- 14.
- ∫√a2−x2x3dx=−√a2−x22x2+12aln(a+√a2−x2x)
- 15.
- ∫dx(a2−x2)3/2=xa2√a2−x2
- 16.
- ∫xdx(a2−x2)3/2=1√a2−x2
- 17.
- ∫x2dx(a2−x2)3/2=x√a2−x2−sin−1xa
- 18.
- ∫x3dx(a2−x2)3/2=√a2−x2+a2√a2−x2
- 19.
- ∫dxx(a2−x2)3/2=1a2√a2−x2−1a3ln(a+√a2−x2x)
- 20.
- ∫dxx2(a2−x2)3/2=−√a2−x2a4x+xa4√a2−x2
- 21.
- ∫dxx3(a2−x2)3/2=−12a2x2√a2−x2+32a4√a2−x2−32a5ln(a+√a2−x2x)
- 22.
- ∫(a2−x2)3/2dx=x(a2−x2)3/24+3a2x√a2−x28+38a4sin−1xa
- 23.
- ∫x(a2−x2)3/2dx=−(a2−x2)3/25
- 24.
- ∫x2(a2−x2)3/2dx=−x(a2−x2)5/26+a2x(a2−x2)3/224+a4x√a2−x216+a616sin−1xa
- 25.
- ∫x3(a2−x2)3/2dx=(a2−x2)7/27−a2(a2−x2)5/25
- 26.
- ∫(a2−x2)3/2xdx=(a2−x2)3/23+a2√a2−x2−a3ln(a+√a2−x2x)
- 27.
- ∫(a2−x2)3/2x2dx=−(a2−x2)3/2x−3x√a2−x22−32a2sin−1xa
- 28.
- ∫(a2−x2)3/2x3dx=−(a2−x2)3/22x2−3√a2−x22+32aln(a+√a2−x2x)
|