Kenan k?l??aslan

  • Baca Hesabı
  • Sürtünme Kaybı
  • Diferansiyel Denklem
  • Denklem Çözümü
    Hesap Mod?lleri Matematik

\(e^{ax}\) içeren integraller

1.
\(\small \int e^{ax} dx =\frac{e^{ax}}{a}\)
2.
\(\small \displaystyle\int xe^{ax}dx=\displaystyle \frac{e^{ax}}{a}\left(x-\displaystyle \frac{1}{a}\right)\)
3.
\(\small \displaystyle\int x^2 e^{ax}dx=\displaystyle \frac{e^{ax}}{a}\left(x^2-\displaystyle \frac{2x}{a}+\displaystyle \frac{2}{a^2}\right)\)
4.
\(\small \begin{array}{lcl} \displaystyle\int x^n e^{ax}dx&=& \displaystyle \frac{x^n e^{ax}}{a}-\displaystyle \frac{n}{a}\int x^{n-1}e^{ax}dx\\ &&\\ &=&\displaystyle \frac{e^{ax}}{a}\left(x^n-\displaystyle \frac{nx^{n-1}}{a}+\displaystyle \frac{n(n-1)x^{n-2}}{a^2}-\cdot\cdot\cdot \displaystyle \frac{(-1)^n n!}{a^n}\right) \end{array}\)
5.
\(\small \displaystyle\int\displaystyle \frac{e^{ax}}{x}dx=\ln x+\displaystyle \frac{ax}{1\cdot 1!}+\displaystyle \frac{(ax)^2}{2\cdot 2!}+\displaystyle \frac{(ax)^3}{3\cdot 3!}+\cdot\cdot\cdot\)
6.
\(\small \displaystyle\int\displaystyle \frac{e^{ax}}{x^n}dx=\displaystyle \frac{-e^{ax}}{(n-1)x^{n-1}}+\displaystyle \frac{a}{n-1}\int\displaystyle \frac{e^{ax}}{x^{n-1}}dx\)
7.
\(\small \displaystyle\int\displaystyle \frac{dx}{p+qe^{ax}}=\displaystyle \frac{x}{p}-\displaystyle \frac{1}{ap}\ln (p+qe^{ax})\)
8.
\(\small \displaystyle\int\displaystyle \frac{dx}{(p+qe^{ax})^2}=\displaystyle \frac{x}{p ^2}+\displaystyle \frac{1}{ap(p+qe^{ax})}-\displaystyle \frac{1}{ap^2}\ln(p+qe^{ax})\)
9.
\(\small \displaystyle\int\displaystyle \frac{dx}{pe^{ax}+qe^{-ax}}=\left\{ \begin{array}{ll} \displaystyle \frac{1}{a\displaystyle \sqrt{pq}}\tan^{-1}\left(\displaystyle \sqrt{\displaystyle \frac{p}{q}}e^{ax}\right) \\\displaystyle \frac{1}{2a\displaystyle \sqrt{-pq}}\ln\left(\displaystyle \frac{e^{ax}-\displaystyle \sqrt{-q/p}}{e^{ax}+\displaystyle \sqrt{-q/p}}\right) \end{array} \right.\)
10.
\(\small \displaystyle\int e^{ax}\sin bx dx=\displaystyle \frac{e^{ax}(a\sin bx -b\cos bx)}{a^2+b^2}\)
11.
\(\small \displaystyle\int e^{ax}\cos bx dx=e^{ax}\displaystyle \frac{(a\cos bx+b\sin bx)}{a^2+b^2}\)
12.
\(\small \small \displaystyle\int xe^{ax}\sin bx dx=\displaystyle \frac{xe^{ax}(a\sin bx -b\cos bx)}{a^2+b^2}-\displaystyle \frac{e^{ax}\left\{(a^2-b^2)\sin bx-2ab\cos bx\right\}}{(a^2+b^2)^2}\)
13.
\(\small \small \displaystyle\int xe^{ax}\cos bx dx=\displaystyle \frac{xe^{ax}(a\cos bx +b\sin bx)}{a^2+b^2}-\displaystyle \frac{e^{ax}\left\{(a^2-b^2)\cos bx+2ab\sin bx\right\}}{(a^2+b^2)^2}\)
14.
\(\small \displaystyle\int e^{ax}\ln xdx=\displaystyle \frac{e^{ax}\ln x}{a}-\displaystyle \frac{1}{a}\int\displaystyle \frac{e^{ax}}{x}dx\)
15.
\(\small \small \displaystyle\int e^{ax}\sin^n bxdx=\displaystyle \frac{e^{ax}\sin^{n-1}bx}{a^2+n^2b^2}(a\sin bx-nb\cos bx) + \displaystyle \frac{n(n-1)b^2}{a^2+n^2b^2}\int e^{ax}\sin^{n-2}bx dx\)
16.
\(\small \small \displaystyle\int e^{ax}\cos^n bxdx=\displaystyle \frac{e^{ax}\cos^{n-1}bx}{a^2+n^2b^2}(a\cos bx+nb\sin bx) + \displaystyle \frac{n(n-1)b^2}{a^2+n^2b^2}\int e^{ax}\cos^{n-2}bx dx\)
beyaz_sayfa_en_alt_oval

Dökümanlar    Ürün ve Hizmetler    Hesaplamalar    Birim Çevir    Referanslar    İletişim

Boru Hesapları    Baca Hesapları    Havalandırma Kanalı    Soğutma, Klima    Denklem Çözümleri    Matematik Formülleri

Kenan KILIÇASLAN 2012© Tüm Hakları Saklıdır.       Designed by Nuit                                                  English    Italiano