Matematik
|
cos(ax) içeren integraller
- 2.
- ∫xcosaxdx=cosaxa2+xsinaxa
- 3.
- ∫x2cosaxdx=2xa2cosax+(x2a−2a3)sinax
- 4.
- ∫x3cosaxdx=(3x2a2−6a4)cosax+(x3a−6xa3)sinax
- 5.
- ∫cosaxxdx=lnx−(ax)22⋅2!+(ax)44⋅4!−(ax)66⋅6!+⋯
- 6.
- ∫cosaxx2dx=−cosaxx−a∫sinaxxdx
- 7.
- ∫dxcosax=1aln(secax+tanax)=1alntan(π4+ax2)
- 8.
- ∫xdxcosax=1a2{(ax)22+(ax)48+5(ax)6144+⋯+En(ax)2n+2(2n+2)(2n)!+⋯}
- 10.
- ∫xcos2axdx=x24+xsin2ax4a+cos2ax8a2
- 11.
- ∫cos3axdx=sinaxa−sin3ax3a
- 12.
- ∫cos4axdx=3x8+sin2ax4a+sin4ax32a
- 14.
- ∫dxcos3ax=sinax2acos2ax+12alntan(π4+ax2)
- 15.
- ∫cosaxcospxdx=sin(a−p)x2(a−p)+sin(a+p)x2(a+p)
- 17.
- ∫xdx1−cosax=−xacotax2+2a2lnsinax2
- 19.
- ∫xdx1+cosax=xatanax2+2a2lncosax2
- 20.
- ∫dx(1−cosax)2=−12acotax2−16acot3ax2
- 21.
- ∫dx(1+cosax)2=12atanax2+16atan3ax2
- 22.
- ∫dxp+qcosax={2a√p2−q2tan−1√(p−q)(p+q)tan12ax1a√q2−p2ln(tan12ax+√(q+p)/(q−p)tan12ax−√(q+p)/(q−p))
- 23.
- ∫dx(p+qcosax)2=qsinaxa(q2−p2)(p+qcosax)−pq2−p2∫dxp+qcosax
- 24.
- ∫dxp2+q2cos2ax=1ap√p2+q2tan−1ptanax√p2+q2
- 25.
- ∫dxp2−q2cos2ax={1ap√p2−q2tan−1ptanax√p2−q2displaystyle12ap√q2−2ln(ptanax−√q2−p2ptanax+√q2−p2)
- 26.
- ∫xmcosaxdx=xmsinaxa+mxm−1a2cosax−m(m−1)a2∫xm−2cosaxdx
- 27.
- ∫cosaxxndx=−cosax(n−1)xn−1−an−1∫sinaxxn−1dx
- 28.
- ∫cosnaxdx=sinaxcosn−1axan+n−1n∫cosn−2axdx
- 29.
- ∫dxcosnax=sinaxa(n−1)cosn−1ax+n−2n−1∫dxcosn−2ax
- 30.
- ∫xdxcosnax=xsinaxa(n−1)cosn−1ax−1a2(n−1)(n−2)cosn−2ax+n−2n−1∫xdxcosn−2ax
|