Equations

# Higher Order Differential Equation Solution

The solution of high order differential equations in the form of $$\displaystyle {\frac{d^{n}y}{dt^{n}}}=f(t,y^{(n-1)},y^{(n-2)}, \dots, y',y)$$ is made by numerical analysis method. Use the variables $$t$$, $$y'''$$, $$y''$$, $$y'$$ and $$y$$. You can use the +, -, *, / math operators and the following functions. Use the pow function to take the exponent. For example, for $$t^ 2$$, type pow (t, 2). (Currently, up to the 4th order is calculated.)

 The differential equation you want to solve: Order Formula: Runge-Kutta-Fehlberg Runge-Kutta Adams-Moulton Metodu
 Variables $$\displaystyle {\frac{d^2y}{dt^2}}=f(t,y,y')=$$ Necessary boundary conditions for solution: $$\displaystyle t_{0}=$$ $$\displaystyle y_{0}=$$ $$\displaystyle y'_{0}=$$ The desired $$t$$ value $$t_n=$$ Increment $$\Delta t=$$
 Equation Solution Differential Equations Differential Equation Solution Higher Order Differential Equation Systems of First Order Differential Eq. Systems of nth Order Differential Equations
 Functions to be used in equations:$$\begin{array}{lll|lll} t^a & : & \mathrm{pow(t,a)} \\\sin\, t & : & \mathrm{sin(t)} &\cos\,t & : & \mathrm{cos(t)} \\\tan\,t & : &\mathrm{tan(t)} &\ln\,t & : & \mathrm{log(t)} \\e^t & : & \mathrm{exp(t)} &\left|t\right| & : & \mathrm{abs(t)} \\\arcsin\,t & : & \mathrm{asin(t)} &\arccos\,t & : & \mathrm{acos(t)} \\\arctan\,t & : & \mathrm{atan(t)} &\sqrt{t} & : & \mathrm{sqrt(t)} \\ \\\pi & : & \mathrm{pi} &e \mathrm{ sayısı} & : & \mathrm{esay} \\\ln\,2 & : &\mathrm{LN2} & \ln\,10 & : & \mathrm{LN10} \\\log_{2}\,e & : & \mathrm{Log2e} & \log_{10}\,e & : & \mathrm{Log10e} \end{array}$$y' for first derivative (one single quotation mark),y'' for second derivative (two single quotation marks), y''' for third derivative (three single quotation marks) will be written.

 Products    Equation Solver    Calculator    Unit Conversion    Reference    Contact Pipe Calculations    Chimney Calculation    Air Ducts    Air Conditioning    Kenan KILIÇASLAN 2012© Copyright.       Designed by Nuit