Kenan kılıçaslan

  • Sürtünme Kaybı
  • Diferansiyel Denklem
  • Denklem Çözümü
Hesap Modülleri Hesap Modülleri

1.Mertebe Diferansiyel Denklem Cözümü

$\displaystyle {\frac{dy}{dx}}=f(x,y)$ veya $\displaystyle {y'}=f(x,y)$ şeklindeki birinci mertebeden diferansiyel denklerin çözümü sayısal analiz metodu ile yapılmaktadır. $x$ ve $y$ değişkenlerini kullanınız. +, -, *, / matematik operatörler ve aşağıdaki fonksiyonları kullanabilirsiniz. Üs almak için pow fonksiyonunu kullanınız. Örneğin $x^2$ için pow(x,2) yazınız.

Çözümünü istediğiniz diferansiyel denklem:
$\displaystyle {\frac{dy}{dx}}=f(x,y)=$
Hesap Formülü:
Çözüm için gerekli sınır koşulları:
$x_0=$
$y_0=$
Bulunması istenen $x$ değeri:
$x_1=$
Artım $\Delta x=$
Denklem içinde kullanılacak fonksiyonlar:
$\begin{array}{rllr} \textbf{pow(x,a)} & : & x^a \\\textbf{sin(x)} & : & sin\, x &\textbf{cos(x)} & : & cos\,x \\\textbf{tan(x)} & : & tan\,x &\textbf{log(x)} & : & ln\,x \\\textbf{exp(x)} & : & e^x &\textbf{abs(x)} & : & \left|x\right| \\\textbf{asin(x)} & : & arcsin\,x &\textbf{acos(x)} & : & arccos\,x \\\textbf{atan(x)} & : & arctan\,x &\textbf{sqrt(x)} & : & \sqrt{x} \\\textbf{pi} & : & \pi &\textbf{esay} & : & e \textrm{ sayısı} \\\textbf{LN2} & : & ln\,2 & \textbf{LN10} & : & ln\,10 \\\textbf{Log2e} & : & log_{2}\,e & \textbf{Log10e} & : & log_{10}\,e \end{array}$
beyaz_sayfa_en_alt_oval